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Abstract—The series hybrid electric tracked bulldozer 2 
(HETB)’s fuel economy heavily depends on its energy 3 
management strategy.  This paper presents a model predictive 4 
controller (MPC) to solve the energy management problem in 5 
an HETB for the first time. A real typical working condition 6 
of the HETB is utilized to develop the MPC. The results are 7 
compared to two other strategies: a rule-based strategy and a 8 
dynamic programming (DP) based one. The latter is a global 9 
optimization approach used as a benchmark. The effect of the 10 
MPC’s parameters (e.g. length of prediction horizon) is also 11 
studied. The comparison results demonstrate that the 12 
proposed approach has approximately a 6% improvement in 13 
fuel economy over the rule-based one, and it can achieve over 14 
98% of the fuel optimality of DP in typical working 15 
conditions. To show the advantage of the proposed MPC and 16 
its robustness under large disturbances, 40% white noise has 17 
been added to the typical working condition. Simulation 18 
results show that an 8% improvement in fuel economy is 19 
obtained by the proposed approach compared to the 20 
rule-based one. 21 

22 
Index Terms—Series hybrid electric tracked bulldozer, 23 

Energy management strategy, Model predictive control, 24 
Rule-based, Dynamic programming, Robustness 25 

I. INTRODUCTION26 

onstruction vehicles, such as bulldozers, play a27 

significant role in modern society. The increasing 28 

reliance on construction vehicles brings serious adverse 29 

impacts such as unsustainable energy use and poor air 30 

quality. Recently, hybrid electric construction vehicles have 31 

appeared. Caterpillar produced the first hybrid electric 32 

tracked bulldozer, D7E, in March 2008. Compared to 33 

traditional models, D7E’s CO and NOx emissions were 34 

reduced by approximately 10 and 20 percent, respectively. 35 

The D7E model can improve fuel economy by 25%. In this 36 
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paper, a new HETB composed of an engine-generator, two 37 

drive motors, and an ultracapacitor pack is put forward. The 38 

powertrain topology of the HETB is shown in Fig.1. This 39 

HETB uses an integrated controller to manipulate two 40 

separate motors on the two sides. The added electric motors 41 

and ultracapacitors provide more flexibility to meet power 42 

demands and achieve minimal fuel consumption [1]. The 43 

performance or fuel economy of the HETB is heavily 44 

dependent on its energy management strategy, which uses a 45 

supervisory controller that can coordinate the energy flow 46 

between different energy sources and enhance the overall 47 

efficiency of the powertrain [2]. 48 

Recently, numerous energy management strategies have 49 

been reported and applied to hybrid electric vehicles 50 

(HEVs) [3], [4], [5], [6], and these strategies can be divided 51 

into four classes [7]. The first type refers to the numerical 52 

optimization method, where the entire or partial drive cycle 53 

is required and the global or local optima is found 54 

numerically; this type includes the DP [8],[9],[10], MPC 55 

[11],[12] and stochastic DP [13]. DP provides a globally 56 

optimal solution and is mainly employed as a good 57 

benchmark for optimality comparison [14]. In the literature 58 

[6], authors firstly propose a novel correctional DP-based 59 

energy management strategy that takes characteristics of 60 

the drive cycle and hybrid powertrain into consideration to 61 

realize the significant improvement of fuel economy and at 62 

the same time to ensure drivability during slope conditions. 63 

The second class represents the analytical optimization 64 

method including Pontryagin’s minimum principle and the 65 

Hamilton-Jacobi-Bellman equation [15]. The third type is 66 

the equivalent consumption minimization strategy (ECMS) 67 

[16], which decides the optimal power split ratio between 68 

different energy sources at each step [17],[18]. 69 

Furthermore, the ECMS method does not require future 70 

driving information as it solves an instantaneous 71 

optimization problem. Given a proper equivalent factor, 72 

ECMS could potentially achieve sub-optimal fuel economy 73 

[19]. Nevertheless, it is nontrivial to tune the equivalent 74 

factor, and ECMS cannot produce globally optimal 75 

performances. ECMS is able to adjust the factor via an 76 

adaptive ECMS as long as the future driving information 77 

can be identified online to achieve better fuel economy 78 

[20], [21]. The fourth category employs fuzzy logic, 79 

heuristic rules, and neural networks for energy management 80 

strategy design [22], [23].  81 
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 The MPC is prevalent and widely employed in HEVs 1 

nowadays as an effective approach to deal with 2 

multivariable constrained control problems, and this 3 

strategy can be treated as a tradeoff between DP and 4 

ECMS. Currently, different kinds of MPCs are widely 5 

utilized because of their ability to deal with multivariable 6 

constrained problems and their potential for the real-time 7 

application as a receding horizon control strategy. 8 

Meanwhile, the MPC has also shown its potential for 9 

application in HEVs [24], [25], [26], [27], [28]. An MPC 10 

solves an energy management problem at every time instant 11 

by quadratic programming [29], nonlinear programming 12 

[30], Pontryagin’s minimum principle [31], and stochastic 13 

DP [32]. In [33], a stochastic MPC was designed for a series 14 

HEV, where a Markov chain was used to model the future 15 

power demand. Its performance was compared to that of a 16 

prescient MPC with a fully known power demand and a 17 

frozen-time MPC using a constant power demand in the 18 

prediction horizon to demonstrate its fuel economy in a 19 

condition similar to the ideal condition (prescient MPC). 20 

TABLE I 
BASIC VEHICLE PARAMETERS 

Component Parameters Quantity 

Diesel Engine maximum power 172kW/1800rpm  

maximum torque 1087Nm/1300rpm 

Motor maximum power 105kW 

rated power 75kW 

maximum torque  800Nm 

rated torque 500Nm 
maximum speed 6000rpm 

rated speed 1430rpm 

Generator maximum power 180kW 
rated power 175kW 

maximum torque 1010Nm 

rated torque 980Nm 
maximum speed 2200rpm 

rated speed 1700rpm 

Ultracapacitor capacity 2.4F 
voltage 600V 

Vehicle curb weight 28000kg 

track width 0.61m 

track length 3.05m 

drive wheel radius 0.46831m 

 

Nomenclature 

 
FE external travel resistance, N hp bulldozer average cutting depth, m 

FT operating resistance ,N μ1 friction coefficient among soil particles 

Fc compaction resistance, N μ2 friction coefficient between the soil and bulldozing plate 
Fb bulldozing resistance, N Vol the soil volume in front of the bulldozing plate, m 

G vehicle’s weight, N θ Slope, ° 

b width of the track. m ks soil loose degree coefficient 
L’ length of the track. m ky cutting force per unit area when the plate is penetrated into the soil, MPa 

c soil cohesion coefficient, KPa km soil fullness degree coefficient 
Ψ soil internal friction angle, ° α0 natural slope angle of the soil, ° 

k soil deformation modulus ，KN/mn+2 X bulldozing plate worn length contacting the ground, m 

n soil deformation index δ cutting angle of the bulldozing plate, ° 
Z track’s amount of sinkage, m Ne speed of engine, rpm 

γ soil unit weight ,N/m3 Pe engine output power, kW 

Nγ, Nc soil Terzaghi coefficients of the bearing capacity Te engine torque, N 
F1 cutting force, N nm motor speed, rpm 

F2 pushing force of the mound ahead of the blade, N Tm motor output torque, N 

F3 friction resistance between the blade and ground, N Puc output power from the ultracapacitor, kW 
F4 component of the frictional resistance in horizontal 

direction when the soil rises along the blade, N 

Pg generator output power, kW 

B1 bulldozer plate width, m ηm motor efficiency 
H bulldozer plate height, m C equivalent capacitance of ultracapacitor, F 

kb cutting force per unit area, MPa SOC state of charge of ultracapacitor 

Gt soil weight in front of the bulldozing plate, N SOE state of energy of ultracapacitor 

 

Fig.1. Configuration of the HETB. 
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Fig.1. Configuration of the HETB. 
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Literature [34] developed an MPC for energy management 1 

with the capability to account for the uncertainty caused by 2 

traffic, destination, and weather. A modified k-nearest 3 

neighbor regressor was utilized to generate weighted 4 

samples of the upcoming drive cycle by feature matching 5 

the current state to historical states, and subsequently, an 6 

MPC was developed based on the obtained information.  7 

In this paper, the MPC method is used to arrive at an 8 

effective energy management system for HETBs. HETBs 9 

are mainly different from road electric hybrid vehicles in 10 

working and driving conditions. Unlike HEVs, HETBs’ 11 

power demands change dramatically between the 12 

soil-cutting stage and the no-load stage under a specific 13 

drive cycle. Consequently, the application of MPC strategy 14 

in HETBs is more complicated than that in HEVs. Besides, 15 

the drive cycle changes sharply according to the ground 16 

characteristic. Thus, the robustness of the HETB is more 17 

important than that of an HEV.  18 

Three scenarios are utilized to develop the energy 19 

management controller using the MPC. The first scenario is 20 

extracted from typical working conditions of the bulldozer. 21 

The optimal solution over a typical drive cycle is obtained 22 

by achieving the maximal fuel economy and then 23 

comparing this to the results from using rule-based and DP 24 

strategies. The effect of the MPC parameters (e.g. length of 25 

prediction horizon) is also investigated. The comparison 26 

indicates that the proposed approach is robust to drive cycle 27 

disturbances and provide much better fuel economy over 28 

rule-based strategies. It is also indicated that the proposed 29 

MPC power management can achieve over 98% of the fuel 30 

optimality of DP without any knowledge of the changes in 31 

drive and working conditions.  32 

The paper is organized as follows: In Section II, the 33 

HETB model is provided; the MPC is developed in Section 34 

III; the other two power management strategies are 35 

provided in the next section; the simulation results under 36 

three scenarios are compared to the rule-based strategy and 37 

the optimal solution calculated by DP in Section V; finally, 38 

comments and future work are discussed. 39 

II. SERIES HETB POWERTRAIN MODEL  40 

A. System Configuration 41 

The vehicle studied is an SD-24 tracked bulldozer from 42 

Shantui Construction Machinery Co., Ltd, and its 43 

powertrain configuration can be seen from Fig.1. The series 44 

hybrid power system is composed of a diesel engine 45 

(175kW), an ultracapacitor pack, a permanent magnet 46 

generator (175/180 kW), two motor drive systems (75/105 47 

kW), and two tracks. A 2.4F ultracapacitor pack is utilized 48 

as an energy storage system. The integrated controller is 49 

developed and used to coordinate the power flow of the 50 

entire powertrain. Specifications of this bulldozer are given 51 

in Table I. 52 

The HETB is modeled in SIMULINK, as shown in Fig.2. 53 

For more information regarding this model, please refer to 54 

[35].  55 

 
Fig.2 HETB model in SIMULINK 

B. The Vehicle Model 56 

Differing from road vehicles, the bulldozer’s major 57 

external forces that are exerted on the two tracks along the 58 

heading direction include the external travel resistance FE 59 

and the operating resistance FT. The aerodynamic drag and 60 

the acceleration resistance are neglected since the bulldozer 61 

has a low velocity [36], [37]. 62 

The external travel resistance FE is caused by the vertical 63 

deformation of the soil under the anterior track of the 64 

bulldozer when driving. It mainly results from the energy 65 

consumption of soil compaction and the effects of 66 

bulldozing resistance can be shown as [38]: 67 
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The operating resistance FT is shown as the following 75 

[39]: 76 

              
4321 FFFFFT                              (7) 77 

              
bpkhBF 1

6

1 10                                 (8) 78 

              
sk

V
F

 cos1
2 

                               (9) 79 

             
ykXBF 21

6

3 10                                (10) 80 

          coscos 2

24 tGF                          (11) 81 

           
0

2

1

tan2

)(



mp khHB
Vol


                            (12)                                                                                                                                                                                                                                                 82 

By combining (1) ~ (12), the vehicle’s power 83 

requirements for the powertrain, Preq, can be formulated as:   84 

                              VFFP TEreq )(                              (13) 85 

where V is the bulldozer’s speed along the longitudinal 86 

direction. 87 
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C. The Engine Model 1 

The experimental approach is adopted to model the 2 

engine, and the engine’s dynamic characteristics are 3 

neglected. The engine fuel consumption is represented by a 4 

function of the mechanical power and crankshaft speed, 5 

both of which were identified from experimental data as 6 

shown in Fig. 3.   7 

 
Fig.3.Fuel consumption map of the diesel engine 

Assuming that engine is able to operate at the fixed 8 

speed, the fuel consumption  
.

/eB g s is a function with 9 

respect to the mechanical power, Pe: 10 
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The engine is constrained to operate within its limits: 12 
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where Ne,min(t) and Ne,max(t)  represent the lower and upper 14 

limit of engine speed at time t, respectively; Pe,min(t) and 15 

Pe,max(t) are the limits of the output power, respectively; 16 

whereas, Te,min(t) and Te,max(t) are the minimum and 17 

maximum engine torque at time t, respectively.  18 

D. The Generator and Motor Models 19 

The generator and motor efficiency characteristics are 20 

represented by a non-linear 3-D Map with respect to torque 21 

and speed using experimental data. The generator 22 

efficiency map is provided in Fig.4, and the motor 23 

efficiency map is indicated in Fig.5. The motor efficiency 24 

ηm at the operation point (nm, Tm) is calculated according to 25 

the following correlation: 26 

                                ),(),( mmmmm TnfTn                    (16) 27 

 

Fig.4 Generator efficiency map 

 

Fig.5 Motor efficiency map 

E. The Ultracapacitor Model 28 

   The ultracapacitor pack is composed of several units in 29 

both parallel and series modes. Each unit can be modeled as 30 

a resistor in series with a capacitance.  The resistance 31 

models the electrolyte losses, while the capacitance 32 

calculates ion accumulation. The model of the entire 33 

ultracapacitor pack can be denoted by:   34 
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where VL is the terminal voltage; Vcap is the voltage across 40 

the equivalent capacitance; Vmax is the ultracapacitor’s 41 

maximum voltage; Icap is the current; Qmax is the maximum 42 

acceptable amount of capacity; Q(t) is the amount of charge 43 

stored in the capacitance; Ecap is maximum energy capacity; 44 

and E(t) represents the amount of energy stored in the 45 

capacitance.  46 

The relationship among the differential of SOE, the 47 

maximum energy capacity, and the ultracapacitor power is 48 

shown in (21). Since the problem is modeled by the power 49 

balance equations, choosing the SOE as the control variable 50 

for the HETB is more natural. The dynamic equation of the 51 

SOE variation is shown as:  52 
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where ηcap is the ultracapacitor’s efficiency. 54 

The power balance model for the electrical summation 55 

node is shown in Fig.6, where the relationship among the 56 

power from the genset, the electric motor, and the 57 

ultracapacitor is described as: 58 
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where Preq is the power requirements from the powertrain; 2 

Pgen,e denotes the electric power from the genset; and ηg is 3 

the generator efficiency.  4 

   From (22), the following constraints on Puc are derived: 5 
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   Furthermore, Puc and the SOE must be satisfied together 7 

with the physical constraints: 8 
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where Pgen,e,max represents the maximum electric power 11 

from the genset; Pgen,e,min refers to the minimum power; 12 

Puc,max is the maximum output power of ultracapacitor; 13 

Puc,min  is the minimum output power; SOEmax denotes the 14 

maximum state of energy; and SOEmin is the minimum state 15 

of energy. 16 
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Fig.6. Power flow of the HETB. 

III. MPC DEVELOPMENT FOR SERIES HETB 17 

As an optimal control method, the MPC originated as a 18 

control technique in the chemistry industry. It is 19 

characterized by its slow dynamics, which provides enough 20 

time for optimization calculations. According to the HETB 21 

model developed in the previous section, the model 22 

predictive controller can be developed using the following 23 

equations: 24 
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where x1=SOE and x2=Be denotes the fuel consumption; 26 

while, u=Puc represents the control input. 27 

The vectors of states, control inputs, measured inputs, as 28 

well as the outputs are defined as: 29 
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The linearized and discretized model of the system 31 

becomes:  32 
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The cost function to be minimized can be described by: 37 
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In the above equation, N is the prediction horizon length; w
y
 39 

and w
u
 refers to the weights for the output y and control 40 

input u, respectively. 41 

The objective function has been formulated for the 42 

energy management problem of the HETB. The main 43 

objective is to achieve optimal fuel economy by tracking 44 

the SOE reference value. The SOE reference trajectory is 45 

obtained from the dynamic programming (DP) 46 

optimization and the fuel consumption’s reference 47 

trajectory is taken as zero. The constraints on the control 48 

effort involved are imposed by enforcing (24) and (25) at 49 

each time step. The state penalty Q and the input penalty R 50 

are: 51 

10;
1

0

0

1000000
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






 RQ  52 

The objective function is transferred into a quadratic 53 

form with regard to the control input. The trajectory of 54 

future states will be obtained by the discrete model as the 55 

prediction horizon length is N [40]:  56 
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 The convex quadratic objective function only with respect 57 

to the input will be obtained by inserting (31) into the 58 

original objective function shown in (30) and neglecting the 59 

constant term: 60 
___

00
2

1
),( UFUHUuxJ TT   (32) 
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where the Hessian matrix H is symmetric and positive or 1 

semi-positive definite and F is the gradient vector. 
__

, RQ  2 

and ref

_

Y should be reformulated according to the prediction 3 

horizon length N based on Q, R, and Yref. The updated 4 

constraints of the increment of the control can be found by 5 

the reformulation of (32) and the constraints shown in (30). 6 

For example, the constraints of the states can be applied to 7 
_

U as )(max

_

XU . 8 

The energy management problem is solved by an open 9 

source solver, qpOASES [41].The optimal control input 10 

sequence u0, u1, u2 …uN-1 is obtained from the solver 11 

qpOASES, and the first element of this trajectory u0 is 12 

applied to the plant model of the HETB. The updated value 13 

of the state is obtained in the subsequent step. The receding 14 

control strategy is implemented by repeating this procedure 15 

during subsequent time steps. The explicit expression of the 16 

quadratic programming is not reported here for the sake of 17 

brevity. 18 

IV. RULE-BASED AND DP-BASED ENERGY MANAGEMENT 19 

STRATEGIES 20 

In this paper, three energy management strategies have 21 

been designed in order to study the potential fuel economy 22 

of an HETB: rule-based strategy, DP, and MPC. 23 

A. The Rule-based strategy 24 

Utilizing a set of rules is the most popular and easiest 25 

method of implementing supervisory control in an HEV 26 

and deciding on the power split ratio between the engine 27 

and the other energy storage system [42]. The parameters of 28 

a rule-based controller are usually obtained from the 29 

powertrain modeling and simulation, possibly by using 30 

optimization techniques. In this study, the rule-based 31 

approach is implemented as follows: the engine output 32 

power follows the power demand of the bulldozer, and the 33 

ultracapacitor acts as the auxiliary power source to supply 34 

power for the power shortage caused by the excessive load 35 

of the power demand. The SOC of the ultracapacitor and 36 

load power requirement determines the working point of 37 

the engine-generator, as shown in Table II.  38 

In this table, Pe_max represents the engine’s maximum 39 

power; P
*
 refers to the target demand power; Pdc represents 40 

the DC bus demand electric power; Puc is the ultracapacitor 41 

power; and SOCmax and SOCmin are the ultracapacitor 42 

maximum and minimum state of charge, respectively. 43 

B. Dynamic programming 44 

Differing from the rule-based strategy, the DP algorithm 45 

usually depends on a model to provide a provably optimal 46 

control strategy by searching all state and control grids 47 

exhaustively [43], [44]. However, the DP-based approach is 48 

not suitable for real-time application since the exact future 49 

driving information is seldom known in the real world [45]. 50 

Nonetheless, the DP-based strategy can provide a good 51 

benchmark for evaluating the optimality of other 52 

algorithms, which helps in ultimately perfecting real-time 53 

strategies [46], [47], [48].  54 

The problem setup for the DP-based strategy requires 55 

discrete values of the control variable and a discrete-time 56 

description of the system. The procedure of DP is 57 

implemented as follows [6].  58 

1) Problem Formulation 59 

The state and the control variables need to be determined 60 

in order to formulate the DP. As mentioned, the state is the 61 

SOE. The control input refers to the output power of the 62 

ultracapacitor. The discrete-time model of the HETB can be 63 

expressed as: 64 

                         ))(),(()1( kukxfkx                              (33) 65 

In the above equation, u(k) and x(k) are the control inputs 66 

and the state variables, respectively. The sampling time is 67 

chosen as 1 second.  68 

The purpose of this optimization problem is to obtain the 69 

optimal control sequence, u(k), and minimize the fuel 70 

consumption over a given drive cycle. The cost function of 71 

this optimization problem is described as follows: 72 

                             
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
1

0

))(),((
M

k

kukxLJ                             (34) 73 

where, L means the instantaneous cost value and M is the 74 

time length of the specific drive cycle.  75 

The physical constraints of state and control variables are 76 

denoted by the following inequalities to guarantee 77 

smooth/safe operation of the key components, including the 78 

engine, motor, and ultracapacitor: 79 
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                        (35) 80 

Furthermore, the equality constraints are used such that 81 

the HETB can satisfy load and speed requirements at all 82 

times. 83 

2) Implementing Dynamic Programming 84 

The main merit of DP is that it is able to deal with the 85 

TABLE II 

RULE-BASED CONTROL STRATEGY 

         Judgment State of the UC 
Power supply 
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nonlinear problem and constraints while obtaining the 1 

optimal policy. The DP problem can be described by (36) 2 

and (37): 3 

Step M-1: 4 

       ))1(),1((min))1((
)1(

1
* 


 MuMxLMxJ

Mu
M

            (36) 5 

Step k, for 10  Mk : 6 

       ))1(())(),((min))(( 1
*

)(

*   kxJkukxLkxJ k
ku

k
            (37) 7 

where Jk
*
(x(k)) refers to the optimal accumulated cost from 8 

time step tk to the terminal; whereas, x(k+1) means the state 9 

at the (k+1)th stage when the control variable uk is applied 10 

at the time step tk  according to (29).     11 

The optimal control policy is obtained by solving the 12 

above recursive equation backwards. The minimizations 13 

are conducted subject to the equality constraints imposed 14 

by the drive cycle and the inequality constraints shown in 15 

(35). 16 

V. CASE STUDY 17 

In this section, the results obtained by the 18 

aforementioned three energy management strategies are 19 

compared and discussed in three scenarios. 20 

A. Scenario 1: Typical working condition 21 

In this scenario, a typical working condition is used for 22 

the simulation to investigate the effect of the prediction 23 

horizon length. In Fig. 7, Velocity (km/h) is the bulldozer 24 

velocity and the depth (m) is soil-cut depth. The working 25 

stages are described as follows: 1~4-s is the traveling stage; 26 

4~16-s is the soil-cutting stage; 16~31-s is the 27 

soil-transportation stage; 31~33-s is the unloading soil 28 

stage, and 33~50-s is the no-load stage. Fig.8 shows the 29 

power demand calculated according to the typical working 30 

condition by the equations described in Section II. 31 

 
Fig.7 Typical working condition of HETB 

 
Fig.8 Power demand of the typical working condition 

 

The most important MPC parameter that affects the 32 

solution is the length of the prediction horizon, N, which 33 

can be 2s, 4s, or 15s. Fig.9 shows the SOE profile 34 

corresponding to the different lengths of prediction 35 

horizons and the optimal solution obtained from the DP 36 

algorithm. It can be observed that as the prediction horizon 37 

increases, the MPC draws closer to the optimal solution. 38 

The improvement in fuel economy is provided in Table III. 39 

To compensate for the discrepancy between the initial SOE 40 

and final SOE, the correction method proposed in [13] is 41 

used such that the comparison can be performed. As seen 42 

from Table III, the fuel consumption also decreases with an 43 

increase of the receding horizon. Finally, a prediction 44 

horizon of 15s will be chosen and used in the MPC 45 

development in the following two scenarios. 46 

 
Fig.9.SOE profile with different length of prediction horizon. 

Fig.10 shows the SOE, ultracapacitor’s current, engine 47 

power, and the ultracapacitor’s output power. The 48 

trajectories of the engine’s power and the ultracapacitor’s 49 

power demonstrate the optimal power split between two 50 

energy resources to result in minimal fuel consumption. 51 

Fuel economy achieved by the MPC algorithm is compared 52 

to the DP algorithm and the rule-based algorithm over the 53 

same working condition shown in Fig.7. As indicated in 54 

Table III, DP helps the HETB consume the minimal amount 55 

of fuel, 290g. The fuel consumption of the rule-based 56 

algorithm from the previous work is 313g, and its fuel 57 

economy is 92.6% of the optimal one. The fuel economy of 58 

the MPC algorithm is better than that of the rule-based 59 

algorithm and much closer to that of the DP algorithm. An 60 

additional 6% fuel economy is obtained by MPC algorithm 61 

over the rule-based one. The MPC can achieve 98.6% fuel 62 

optimality in relation to the optimal DP under a typical 63 

driving scenario. Although DP cannot be used in real time, 64 

analyzing its behavior can provide meaningful insight into 65 

the possible improvement of the MPC controller.  66 
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TABLE III 
FUEL CONSUMPTION COMPARISON UNDER SCENARIO 1 

Control Strategy Fuel Consumption (g) Fuel Economy (%) 

DP 290 100 

Rule-based 313 92.6 

 
MPC 

N=2 
N=4 

N=15 

295.4 
294.6 

294 

98.1 
98.4 

98.6 
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Fig.10. MPC results under scenarios 1 

B. Scenario 2: The Working Condition under 1 

Disturbances 2 

In order to verify the robustness of the proposed MPC 3 

strategy, a disturbance of 40% is added to the typical 4 

working condition as shown in Fig.11.  5 

 
Fig.11. Power demand comparison under scenario 2 

 
Fig.12. MPC results under scenario 2 

 
Fig.13. SOE profile comparison under scenario 2 

The results of the system SOE, ultracapacitor’s current, 6 

engine power, and input Puc are presented in Fig.12. Fig. 13 7 

shows the comparison of the SOE between the MPC and the 8 

DP under Scenario 2. The fuel consumption of the three 9 

energy management strategies is shown in Table IV. The 10 

MPC algorithm can achieve 98.9% fuel optimality with 11 

respect to the DP benchmark under scenario 2; whereas, the 12 

rule-based power management can only achieve 91%. The 13 

MPC strategy can obtain an additional 8% fuel economy 14 

improvement over that of the rule-based strategy. We can 15 

conclude that the MPC strategy is more effective when the 16 

working condition is not fully known. 17 

C. Scenario 3: The Combined Working Condition 18 

Although the working condition is preset, there would be 19 

uncertainties or disturbances in real applications where the 20 

real working condition would distribute around the typical, 21 

preset working condition.  Therefore, a combined working 22 

condition with a 40% disturbance is used to evaluate the 23 

MPC’s robustness, as shown in Fig.14. The same MPC 24 

power management strategy is used for the disturbed 25 

combined working conditions.   26 

 
Fig.14. Power demand comparison under scenario 3 

 
Fig.15. Power demand comparison under scenario 3 
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TABLE V 

FUEL CONSUMPTION COMPARISON IN SCENARIO 3 

Control Strategy Fuel Consumption (g) Fuel Economy (%) 

DP 2259.5 100 
Rule-based 2583.6 87.5 

MPC 2376.9 95 

 

TABLE IV 

FUEL CONSUMPTION COMPARISON IN SCENARIO 2 

Control Strategy Fuel Consumption (g) Fuel Economy (%) 

DP 304.7 100 
Rule-based 334.8 91 

MPC 308 98.9 
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Fig.16. SOE profile comparison under scenario 3 

The results of the system SOE, ultracapacitor’s current, 1 

engine power, and input Puc are presented in Fig.15. Fig. 16 2 

shows the comparison of the SOE between the MPC and the 3 

DP under scenario 3. The fuel consumption comparison is 4 

shown in Table V. The DP-based control strategy with the 5 

actual working condition is used to evaluate the MPC and 6 

rule-based performances in the presence of drive cycle 7 

disturbances. It can be seen from Table V that the MPC 8 

algorithm can achieve 95% fuel optimality with respect to 9 

the DP benchmark under scenario 3 while the rule-based 10 

power management can only achieve 87.5%. An additional 11 

8% fuel economy improvement is obtained from the MPC 12 

algorithm over that of the rule-based strategy. 13 

The conclusion can be drawn that even under disturbed 14 

conditions, the MPC can work very well in spite of using 15 

the typical working condition for its prediction. One 16 

simulation step has the calculation time of mere 17 

milliseconds, so this proposed MPC can be used in real 18 

time. All results demonstrate that the proposed MPC is 19 

robust and applicable.  20 

VI. CONCLUSION 21 

The application of the model predictive energy 22 

management strategy of a series HETB was presented in 23 

this study. In order to develop the MPC strategy, the 24 

structure and modeling of the HETB were discussed, and 25 

the effect of the most important MPC parameters was 26 

investigated after implementation of the proposed strategy. 27 

This paper also presented a comparative study between 28 

the MPC and two other strategies: 1) rule-based control 29 

strategy; 2) DP algorithm for minimizing fuel consumption. 30 

The structure and modeling of the HETB were developed 31 

first. Using this model, the formulations of three energy 32 

management strategies were presented. Simulation results 33 

showed that under the typical working condition, the fuel 34 

economy achieved with the MPC is 6% better than that 35 

achieved by the rule-based algorithm. The proposed MPC 36 

power management also demonstrated that it can achieve 37 

98% fuel optimality with respect to the DP benchmark in 38 

the typical working condition.  39 

In order to verify the advantage of the MPC strategy 40 

under large disturbances, a 40% white noise was added to 41 

the typical working condition. Simulation results 42 

demonstrated that the MPC strategy can obtain an 43 

additional 8% fuel economy improvement over that of the 44 

rule-based strategy under disturbed scenarios. This shows 45 

the robustness of the proposed energy management for 46 

large disturbances. 47 

 Further simulation and experimental investigations are 48 

underway to test and verify these quantitative results. 49 

Future work will focus on real-world cases to evaluate the 50 

proposed power management strategy and to make it more 51 

robust under all working and driving conditions.  52 
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